Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Hyun-Kwuon Lee 3 Articles
Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development
Kyeong-Sik Cho, Hyun-Kwuon Lee, Sang-Woo Lee
J Korean Powder Metall Inst. 2010;17(1):13-22.
DOI: https://doi.org/10.4150/KPMI.2010.17.1.013
  • 9 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. beta-SiC powder with 0, 2, 6, 10 wt% of alpha-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at 1700-1850°C for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at 100°C/min, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to 1700°C consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at 1750°C and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of alpha-SiC seeds into beta-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the alpha-SiC seeds added in beta-SiC, the rate of grain growth decreased with alpha-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

Citations

Citations to this article as recorded by  
  • Effect of Sintering Temperature on Microstructure and Mechanical Properties for the Spark Plasma Sintered Titanium from CP-Ti Powders
    Kyeong-Sik Cho, In-Beom Song, Min-Hyeok Jang, Ji-Hye Yoon, Myung-Hoon Oh, Jae-Keun Hong, Nho-Kwang Park
    Journal of Korean Powder Metallurgy Institute.2010; 17(5): 365.     CrossRef
Thermal Stability of Al-Fe-X Alloy System Prepared by Mechanical Alloying and Spark Plasma Sintering: II. Al-Fe-Cr and Al-Fe-Mo
Hyun-Kwuon Lee, Sang-Woo Lee, Kyeong-Sik Cho
J Korean Powder Metall Inst. 2005;12(1):43-50.
DOI: https://doi.org/10.4150/KPMI.2005.12.1.043
  • 25 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to Al-Fe-Cr and Al-Fe-Mo powder mixture to investigate effects of Cr and Mo addition on thermal stability of Al-Fe, and thereby to enhance its thermal stability up to 500circC. Various analytical techniques including micro-Vickers hardness test, SEM, TEM, X-ray diffractometry and corrosion test were carried out. It was found that addition of Cr and Mo to Al-Fe system played a role of grain growth inhibitor of matrix Al and some precipitates such as Al_3Fe during SPS and subsequent heat treatment. The inhibition of grain growth resulted in increased Vickers hardness and thermal stability up to 500circC comparing to those of Al-Fe alloy system.

Citations

Citations to this article as recorded by  
  • A Constitutional Framework of a Future Palestinian State - Synthesis of Leading Palestinian Thinking and Public Perceptions
    Asem Khalil
    SSRN Electronic Journal.2009;[Epub]     CrossRef
Thermal Stability of Al-Fe-X Alloy System Prepared by Mechanical Alloying and Spark Plasma Sintering: I. Al-Fe
Hyun-Kwuon Lee, Sang-Woo Lee, Kyeong-Sik Cho
J Korean Powder Metall Inst. 2005;12(1):70-78.
DOI: https://doi.org/10.4150/KPMI.2005.12.1.070
  • 19 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to understand mechanical alloying processing of Al-Fe alloy system. The thermal stability of mechanically alloyed Al-Fe alloy was intended to be enhanced by SPS process. Various analytical techniques including particle size analysis, density measurement, micro-Vickers hardness test, SEM, TEM, and X-ray diffractometry were adopted to find optimum processing conditions for mechanical alloying and subsequent SPS and to estimate thermal stability of the prepared alloy. It was found from the treatment of mechanically alloyed Al-8wt.%Fe powder mixture that needle-shaped Al_3Fe precipitates was formed in the Al-Fe matrix, and the alloy compact showed enhanced densification and reached its full density with little loss of its fine microstructure. After heat treatment at 500circC, it was also shown that the thermal stability of Al-8wt.%Fe alloy fabricated in the present study was enhanced, which was due to its fine microstructure developed by fast densification of SPS.

Citations

Citations to this article as recorded by  
  • Effect of Sintering Temperature on Microstructure and Mechanical Properties for the Spark Plasma Sintered Titanium from CP-Ti Powders
    Kyeong-Sik Cho, In-Beom Song, Min-Hyeok Jang, Ji-Hye Yoon, Myung-Hoon Oh, Jae-Keun Hong, Nho-Kwang Park
    Journal of Korean Powder Metallurgy Institute.2010; 17(5): 365.     CrossRef

Journal of Powder Materials : Journal of Powder Materials